Functional differentiation of adult neural circuits from a single embryonic network.

نویسندگان

  • B Casasnovas
  • P Meyrand
چکیده

The stomatogastric nervous system (STNS) of adult lobsters and crabs generates a number of different rhythmic motor patterns which control different regional movements of the foregut. Since these output patterns are generated by discrete neural networks that, in the adult, are well characterized in terms of synaptic and cellular properties, this system constitutes an ideal model for exploring the mechanisms underlying the ontogeny of neural network organization. The foregut and its rhythmic motor patterns were studied in in vitro STNS nerve-muscle preparations of the embryo and different larval stages of the lobster Homarus gammarus. The development of Homarus comprises a long embryonic stage in ovo followed by three pelagic larval stages prior to the onset of benthic life. During these stages the foregut itself develops slowly from a simple ectodermal invagination that occurs in the embryo. During successive larval stages it progressively acquires all the specialized structures and shape of the adult foregut. In contrast, the STNS is morphologically recognizable at early embryonic stages. In all recorded stages the STNS spontaneously expresses rhythmic motor activity. During development, this activity is progressively restructured, beginning with a single rhythmic motor pattern in the embryo where all the stomodeal muscles are strongly coordinated. In subsequent stages, however, this single pattern is progressively subdivided to give rise eventually to the three discrete rhythmic motor patterns characteristic of the adult STNS. Our data suggest that rather than a dismantling of redundant embryonic and larval neural networks, the different adult networks emerge as a progressive partitioning of discrete circuits from a single embryonic network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Cholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA

Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...

متن کامل

Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat

Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes.  Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 1995